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Abstract—Active learning is well-motivated in many super-
vised learning tasks where unlabeled data may be abundant
but labeled examples are expensive to obtain. The goal of
active learning is to maximize the performance of a learning
model using as few labeled training data as possible, thereby
minimizing the cost of data annotation. So far, there is still very
limited work on active learning for regression. In this paper,
we propose a new active learning framework for regression
called Expected Model Change Maximization (EMCM), which
aims to choose the examples that lead to the largest change
to the current model. The model change is measured as the
difference between the current model parameters and the
updated parameters after training with the enlarged training
set. Inspired by the Stochastic Gradient Descent (SGD) update
rule, the change is estimated as the gradient of the loss with
respect to a candidate example for active learning. Under this
framework, we derive novel active learning algorithms for both
linear regression and nonlinear regression to select the most
informative examples. Extensive experimental results on the
benchmark data sets from UCI machine learning repository
have demonstrated that the proposed algorithms are highly
effective in choosing the most informative examples and robust
to various types of data distributions.

Keywords-Active learning, Linear Regression, Nonlinear re-
gression, Expected Model Change Maximization

I. INTRODUCTION

Data collection and annotation is a fundamental problem

in data mining and machine learning. The widely used

method for data collection is called passive learning, where

training examples are randomly selected from the underly-

ing distribution and manually annotated by human editors.

However, due to the expensive cost associated with the above

data collection process, it is always the case that there are

not enough data examples to train a high quality model. To

reduce the cost of data annotation, active learning aims to

choose the most informative examples that maximize the

accuracy of the model trained if they are labeled and added

to the training set. A typical active learning process can be

briefly described as follows: 1) Generate a base model from a

small initial training set. 2) Select examples with a sampling

function from a large set of unlabeled data and label them.

3) Add the newly labeled examples to the training set and

update the model. This sampling process is repeated until a

certain performance expectation is met or a certain labeling
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budget is used up. Active learning is well-motivated in

many supervised learning tasks where unlabeled data may

be abundant but labeled data points are expensive to obtain.

Active learning has been extensively studied for classifi-

cation problems. One of the most widely used approaches

is uncertainty sampling which aims to choose the exam-

ples whose labels the current classifier is most uncertain

about [1], [3], [8]. This active learning strategy is usually

straightforward to implement for probabilistic models. Take

binary classification for example, uncertainty sampling is to

choose the examples whose posterior probabilities are near-

est 0.5 [1]. For multi-class classification problems, margin-

based uncertainty sampling is a popular method which aims

to select the examples that have the smallest margin between

the first and second most probable class labels [3]. For

non-probabilistic learning models such as Support Vector

Machines (SVMs), this strategy selects the examples which

are closest to the separating hyperplane [8]. Compared to

active learning for classification, it is non-trivial to identify

the uncertain examples in regression tasks. First, the output

for regression is a continuous value rather than a set of class

posterior probabilities, making the margin-based sampling

strategy unsuitable. Second, there is no notion of distance

in regression tasks, and hence the distance-based sampling

method is not applicable.

So far, there is still very limited work on active learning

for regression [7], [12], [13], [14], [10], [17]. Therefore,

a general active learning framework for regression is of

great need. This paper considers the capacity of examples to

change the current model, and attempts to tackle the problem

of active learning for regression by maximizing the model

change. Previous work with similar idea have been studied

for classification [11] and ranking [15] tasks. In [11], Settles

et al. introduce a theoretical active learning strategy, named

Expected Gradient Length (EGL), which aims to query the

examples that would maximally change the current model.

The model change is estimated as the length of the updated

gradient of the objective function with respect to the model

parameters, which is obtained by the accumulated training

set. In [15], the change is measured as the difference between

the current model and the additional model trained with the

selected data examples.

We propose a new active learning framework for regres-
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Figure 1: An illustrative example for EMCM algorithm in

linear regression. The red cross points denote the training

data set, and the blue plus points represent the unlabeled

data set. The dotted red line is the current linear regression

model. After choosing the example A leading to the greatest

change in the current model, the model is updated with the

accumulated data (denoted as the solid blue line).

sion called Expected Model Change Maximization (EM-

CM), which measures the change as the difference between

the current model parameters and the new parameters trained

with the enlarged training set. Inspired by the Stochastic

Gradient Descent (SGD) update rule, where the model

parameters are updated repeatedly using the gradient of the

loss with respect to each single training example, we use the

gradient of the error with respect to a candidate example to

estimate the model change. Under this framework, we first

derive a novel active sampling algorithm for linear regres-

sion to choose the examples that would maximally change

the current model, where the change is straightforward to

calculate according to the gradient. For nonlinear regression,

we choose the Gradient Boosting Decision Tree (GBDT), a

well-known nonlinear regression model, as the base learner

in this study. Compared to linear regression, GBDT has a

more complicated model form, and it is difficult to measure

the model change using the gradient directly. To solve this

problem, we generate super features from trees using feature

mapping and represent each unlabeled example with super

features, so that the GBDT model could be approximated

as a linear regression model. We then propose an active

learning algorithm to choose the examples which lead to

the largest change in the model with respect to the super

features. Extensive experimental results on benchmark data

sets from UCI machine learning repository have demonstrat-

ed that the proposed active learning algorithms are highly

effective in selecting the most informative examples and

robust to various types of data distributions.

Figure 1 presents an illustrative example to explain the

EMCM algorithm for linear regression. The red cross points

denote the training data set, and the blue plus points repre-

sent the unlabeled data set (denoted as pool). As shown in

the figure, we observe that the proposed EMCM algorithm

chooses the example A for annotation to maximally change

the current model. The regression model then is updated with

the enlarged training set and achieves a higher accuracy.

The main contributions of this paper are summarized as

follows.

• We propose a new active learning framework for re-

gression , called Expected Model Change Maximization

(EMCM), which chooses the examples that result in the

greatest change to the current model.

• Under this framework, We derive a novel active learn-

ing algorithm for linear regression.

• We approximate the Gradient Boosting Decision Tree

(GBDT), a well-known nonlinear regression model, as

a linear regression model using feature mapping, and

derive an active learning algorithm.

The rest of this paper is organized as follows: Section II

briefly reviews the related work. Section III introduces the

general framework of Expected Model Change Maximiza-

tion (EMCM). The proposed active learning for regression

algorithms, including linear and nonlinear regression, are

presented in Section IV. Section V presents the experiments

and interprets the results. Finally, we conclude the paper and

propose for future directions in Section VI.

II. RELATED WORK

In this section, We briefly review the related work. A

comprehensive active learning survey can be found in [5].

A. Active Learning for Classification

So far, a number of strategies for active learning have been

proposed for classification problems. One common strategy

is called uncertainty sampling [1], [3], [8], which aims to

query the examples about which the current model is least

certain how to label. This strategy is usually straightforward

for probabilistic models using entropy to measure the uncer-

tainty [3]. For the non-probabilistic models such as Support

Vector Machines (SVMs), this strategy selects the example

which is close to the separating boundary [8].

Query by committee (QBC) [2] is another typical active

learning strategy. The QBC strategy generates a committee

of models and selects the unlabeled example about which the

committee members disagree the most. A popular function

to quantify the disagreement is vote entropy. To efficiently

generate the committee, ensemble learning algorithms, such

as Bagging and Boosting, have been employed [4].

Another decision-theoretic active learning strategy aims

to minimize the generalization error of the model trained.

Roy et al. [6] proposed an optimal active sampling method

to choose the examples that lead to the lowest generalization

error on the test set once labeled. The weakness is that the
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computational cost of this method is extremely high. Instead

of choosing examples yielding the smallest generalization

error, Nguyen et al. [18] suggested to select the examples

having the largest contribution to the current error.

B. Active Learning for Regression

Compare to active learning for classification, there is still

very limited work on active learning for regression.

Castro et al. [12] analyzed active learning in the regression

setting with a certain noise rate. Sugiyama [13] proposed

a theoretical active learning approach based on general-

ization error minimization under the assumption that the

distribution of test input points is known and the training

examples are allowed to locate at any desired position, and

denoted it as population-based active learning. Sugiyama et

al. [14] then extend the population-based active learning

to the pool-based active learning where the examples are

chosen from a given pool set. The base learner used is an

additive regression model, and the parameters are learned

by importance-weighted least-squares minimization. Cohn

et al. [7] proposed a statistically optimal active learning

approach, which aims to choose the examples minimizing

the output variance to reduce the generalization error. They

applied the approach to various types of models including

locally weighted regression. Freund et al. [2] argued that the

QBC framework could be applied when the outputs were not

binary or even discrete. This is related to the variance-based

QBC for regression [17]. Yu et al. [10] proposed passive

sampling heuristics for regression based on the geometric

characteristics in feature space.

III. THE FRAMEWORK OF EXPECTED MODEL CHANGE

MAXIMIZATION

In this section, we first introduce the general framework of

Expected Model Change Maximization (EMCM). Then we

provide a short interpretation to better motivate the proposed

EMCM framework.

A. The EMCM Framework

In supervised learning problems, the objective is to learn

a model f that minimizes the generalization error on the

unseen data:

ε =

∫
X×Y

�[f(x), y(x)]dP (x, y), (1)

where y(x) is the true label of x, and f(x) is the predicted

label. �[f(x), y(x)] is a given loss function. Because the joint

distribution P (x, y) is usually not known, formula (1) can

not be directly solved. In practice, we are given a training

set D = {(xi, yi), xi ∈ X , yi ∈ Y}ni=1 drawn i.i.d. from

P (x, y), i.e. D ∼ P (x, y), and construct the model that

minimizes the empirical error:

ε̂D =

n∑
i=1

�[f(xi), yi]. (2)

Suppose the model is parameterized by θ. To find θ mini-

mizing the empirical error, a widely used search approach

is called Stochastic Gradient Descent (SGD), where the pa-

rameters θ are repeatedly updated according to the negative

gradient decent of the loss �(θ) with respect to each training

example (xi, yi):

θ := θ − α
∂�xi

(θ)

∂θ
i = 1, 2, ..., n, (3)

where α is called the learning rate.

Here we consider the update rule in active learning cases.

If a candidate example x+ is added to the training set with

a given label y+, the empirical risk on the enlarged training

set D+ = D ∪ (x+, y+) then becomes:

ε̂D+ =
n∑

i=1

�[f(xi), yi] + �x+ [f(x+), y+]︸ ︷︷ ︸
:=�x+ (θ)

. (4)

Thus, the model obtained by minimizing the empirical risk is

changed due to the inclusion of the new example (x+, y+).
We measure the model change C(x+) as the parameter

change using the gradient of the loss at the example x+:

C(x+) = α
∂�x+(θ)

∂θ
. (5)

The goal of the sampling strategy is to choose the example

x∗ that could maximally change the current model, and the

selection function can be formulated as:

x∗ = argmax
x∈pool

||C(x)||. (6)

In practice, we do not know the true label of the data point

x+ in advance. Therefore, we are not able to estimate the

model change in Eq.(6) directly. Instead, we use the expected

change over all possible labels y+ ∈ {y1, y2, ..., yK} to

approximate the true change. Suppose the learning rate α for

each candidate example is identical, the EMCM for active

learning strategy is represented as:

x∗ = argmax
x∈pool

K∑
k=1

P (yk|x)||
∂�x(θ)

∂θ
||, (7)

where P (yk|x) is the conditional probability of label yk
given data example x estimated by the current model.

B. Interpretation

In this section, we empirically show the link between the

model change and the generalization error reduction to better

motivate the proposed EMCM framework. We aim to answer

the following question: does the sampling strategy lead to a

better generalization performance?

The answer is described as follows: First, the general-

ization error could be changed if and only if the model is

changed. In other words, the example that can not update the

current model is useless for active learning. Second, a big

model change may not always result in a good generalization
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performance because it may choose an outlier. However, in

the active learning task, we repeatedly choose the unlabeled

examples from a pool set. If the model is changed due to

the outlier, this sampling strategy will certainly choose a

good example that can maximize the change again in the

next data selection round, so that the negative effect of the

outlier will be relieved. Because the number of outliers is

usually very small in practice, we expect that the proposed

sampling strategy will lead to a good generalization ability

with more data sampled.

IV. EMCM FOR ACTIVE LEARNING IN REGRESSION

In this section, we first briefly introduce the linear and

nonlinear regression models used as the base learners in this

study. Then, the details of the active learning algorithms are

provided respectively.

A. Regression Models

1) Linear Regression: A linear regression model assumes

that the regression function is linear with regards to the

example features, and the model form can be formulated

as:

f(x; θ) =

p∑
i=0

θix(i) = θTx, (8)

where x(0) = 1 is the intercept term, and x(i), i = 1, 2, ..., p
are the features of example x. The linear model is parame-

terized by the weight vector θ.

2) Nonlinear Regression: In this study, we choose Gradi-

ent Boost Decision Tree (GBDT) as the learner for nonlinear

regression. GBDT can be expressed as an additive model:

f(x; {λ,Θ}M1 ) =
M∑

m=1

λmhm(x; Θm), (9)

where {λ,Θ}M1 parameterize the model. Each base tree

hm(x; Θm) is a J-terminal node regression tree:

h(x; {γ,R}J1 ) =
J∑

j=1

γj1(x ∈ Rj), (10)

where {γ}J1 are coefficients, {R}J1 are the regions parti-

tioned by the decision tree, and 1(·) is the indicator function

of the region association. More details about GBDT can be

found in [9].

B. EMCM for Active Learning in Linear Regression

The objective of regression is to learn a function f̂ : X →
Y that minimizes a given loss. Given the training data D =
{(xi, yi)}ni=1, xi ∈ X , yi ∈ Y}, in the case of squared-error

loss, the empirical risk can be represented as:

ε̂D =
1

2

n∑
i=1

(f(xi)− yi)
2. (11)

Assume a candidate example x+ with the label y+ is added

to the training set. The empirical risk on the expanded

training set D+ = D ∪ (x+, y+) then becomes:

ε̂D+ =
1

2

n∑
i=1

(f(xi)− yi)
2 +

1

2
(f(x+)− y+)2︸ ︷︷ ︸

:=�x+ (θ)

. (12)

The derivative of the squared-error loss �x+(θ) with respect

to the parameters θ at x+ is formulated as:

∂�x+(θ)

∂θ
=(f(x+)− y+)

∂f(x+)

∂θ

=(f(x+)− y+)
∂θTx+

∂θ
=(f(x+)− y+)x+ (13)

Since the true label y+ is actually unknown before querying

in practice, we utilize bootstrap to construct an ensemble

B(K) = {f1, f2, ..., fK} to estimate the prediction distribu-

tion {y1, y2, ..., yK}, and use the expected model change to

approximate the true model change. The connection between

bootstrap and prediction distribution has been investigated

in previous work [16]. Therefore, the sampling function for

linear regression can be formulated as:

x∗ = argmax
x∈pool

1

K

K∑
k=1

||(f(x)− yk(x))x||. (14)

The pseudo-code for EMCM for linear regression is shown

in Algorithm 1.

Algorithm 1 EMCM for active learning in linear regression

Input: the small labeled data set D={(xi, yi)}ni=1, the un-

labeled pool set, the linear regression model f(x; θ) trained

with the labeled data set.

1: Construct an ensemble with bootstrap examples:

B(K) = {f1, f2, ..., fK}
2: for each x in pool set do
3: for k ← 1 to K do
4: yk(x)← fk(x)
5: Calculate the derivative using Eq.(13):

∇θ�k(θ)← (f(x)− yk(x))x
6: end for
7: Estimate the true model change by expectation calcu-

lation over K possible labels using Eq.(14).

8: end for
Output:Select the x∗ having the largest expected change.

C. EMCM for Active Learning in Nonlinear Regression

GBDT is characterized by parameters {λ, {γ,R}J1 }M1 ,

where {γ,R}J1 are the parameters of each base function, a J-

terminal node regression tree. As tree models are not smooth

and the parameters are not derivable, we can not directly
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Algorithm 2 EMCM for active learning in GBDT regression

Input: the small labeled data set D={(xi, yi)}ni=1, the unla-

beled pool set, the GBDT regression model f(x;λ) trained

with the labeled data set.

1: Construct an ensemble with bootstrap examples:

B(K) = {f1, f2, ..., fK}
2: for each x in pool set do
3: Generate super features from trees:

φ(x) = [h1(x), h2(x), ..., hM (x)]T

4: for k ← 1 to K do
5: yk(x)← fk(x)
6: Calculate the derivative using Eq.(17):

∇θ�k(θ)← (f(x)− yk(x))φ(x)
7: end for
8: Estimate the true model change by expectation calcu-

lation over K possible labels using Eq.(18).

9: end for
Output:Select the x∗ having the largest expected change.

estimate the model change using the gradient. To solve this

problem, We assume that adding a single example to the

training set does not change the structure of the tree. For a

regression tree, the predictive rule is: x ∈ Rj ⇒ h(x) = γj .

Because the number of examples chosen in each sampling

round is relatively small compared to the size of current

training data, in most cases the region where x is located is

not changed. Thus, the assumption is reasonable. Under this

assumption, we employ the concept of super features based

on individual trees and map each unlabeled example to the

super features:

φ(x) = [h1(x), h2(x), ..., hM (x)]T. (15)

With the super features, the GBDT model can be approxi-

mated as a linear regression model:

f(x; {λ}M1 ) =

M∑
m=1

λmhm(x) = λTφ(x). (16)

Here, we assume that the parameters of each regression tree,

i.e. {γ,R}J1 , remain unchanged and focus on the change in

parameters {λ}M1 for active learning.

The derivative of the squared-error �x+(λ) with respect to

the parameters λ = {λ1, λ2, ..., λM} at the candidate data

point (x+, y+) is:

∂�x+(λ)

∂λ
=(f(x+)− y+)

∂f(x+)

∂λ

=(f(x+)− y+)
∂λTφ(x+)

∂λ
=(f(x+)− y+)φ(x+). (17)

Similar to active learning for linear regression, we create an

ensemble B(K) = {f1, f2, ..., fK} on bootstrap examples

to estimate the prediction distribution {y1, y2, ..., yK}, and

Table I: The information of the five regression data sets from

UCI repository.

Data set # Examples # Features

Concrete 1030 8

Housing 506 13

Wine
Redwine 1599 11

Whitewine 4898 11

Yacht 308 6

Table II: The statistics of the five benchmark regression data

sets in the active learning setting.

Data set # Ex. in L # Ex. in U # Ex. in T
Concrete-1 100 (10%) 730 (70%) 200 (20%)

Concrete-2 200 (20%) 630 (60%) 200 (20%)

Concrete-3 300 (30%) 530 (50%) 200 (20%)

Housing-1 50 (10%) 356 (70%) 100 (20%)

Housing-2 100 (20%) 306 (60%) 100 (20%)

Housing-3 150 (30%) 256 (50%) 100 (20%)

Redwine-1 160 (10%) 1119 (70%) 320 (20%)

Redwine-2 320 (20%) 959 (60%) 320 (20%)

Redwine-3 480 (30%) 799 (50%) 320 (20%)

Whitewine-1 490 (10%) 3428 (70%) 980 (20%)

Whitewine-2 980 (20%) 2938 (60%) 980 (20%)

Whitewine-3 1470 (30%) 2448 (50%) 980 (20%)

Yacht-1 30 (10%) 218 (70%) 60 (20%)

Yacht-2 60 (20%) 188 (60%) 60 (20%)

Yacht-3 90 (30%) 158 (50%) 60 (20%)

approximate the true change using its expectation. The final

sampling criteria for GBDT can be expressed as:

x∗ = argmax
x∈pool

1

K

K∑
k=1

||(f(x)− yk(x))φ(x)||. (18)

The corresponding pseudo-code is given in Algorithm 2.

V. EXPERIMENTS

A. Data Set and Experimental Settings

To validate the performance of the proposed active learn-

ing algorithms, we use five benchmark data sets of various

sizes from UCI machine learning repository1: Concrete,

Housing, Wine (The Wine dataset consists of two collec-

tions: Redwine and Whitewine), and Yacht. These five real-

world data sets are released from various types of domains

and have been widely used for testing regression algorithms.

Table I shows the information of the five regression data sets.

Each data set is randomly split into three disjoint subsets:

the base labeled training set (denoted as L), the unlabeled

pool set (denoted as U ), and the test set (denoted as T ). We

use the base labeled training set L as the small labeled data

1http://archive.ics.uci.edu/ml/
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Figure 2: Comparison results for the linear regression model on the Concrete data set in terms of RMSE.
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Figure 3: Comparison results for the linear regression model on the Housing data set in terms of RMSE.

set to train the initial regression models. The pool set U is

used as a large size unlabeled data set to select the most

informative examples, and the test set T is used to evaluate

different active learning algorithms. To test the robustness of

the proposed algorithms, we independently construct three

active learning scenarios for each data set to simulate differ-

ent types of data distributions: L(10%)+U (70%)+T (20%),

L(20%)+U (60%)+T (20%), and L(30%)+U (50%)+T (20%).

Table II provides the statistics of the five benchmark data

sets in the active learning setting. We normalize the features

with the function below:

fN
(i,j) =

f(i,j) −min{f(i,j); i ∈ n}
max{f(i,j); i ∈ n} −min{f(i,j); i ∈ n} , (19)

where n denotes the number of examples in the data set,

and f(i,j) represents the j-th feature from the i-th example.

Two regression models are used as the base learners: the

linear regression model and the GBDT model. The size of

the ensemble K is empirically set to be 4. In this study, the

active learning process iterates 10 rounds. In each round of

active selection, 3% of the whole examples are chosen from

U and labeled. These examples are then added to the training

set, and the regression models are re-trained and tested on

the separate test set T .

B. Comparison Methods and Evaluation Metric

In order to test the effectiveness of the proposed active

learning algorithms, our algorithms are compared with the

following active learning for regression approaches:

• QBC [2], [17]: The QBC algorithm for regression is to

choose the example that has the highest variance among

the members’ prediction. The committee is constructed

on bootstrap examples with Bagging type which refers

to Query-by-Bagging in this work.

• Greedy [10]: The Greedy algorithm is to select the new

example which has the largest minimum distance from

the labeled set in feature space.

• Random: The random selection, which is widely used

in practice, represents a baseline (denoted as RAND).

For evaluation, a widely adopted metric for regression,

Root Mean Squared Error (RMSE), is used to measure the

performance of the regression models on the test set:

RMSE =

√√√√ 1

|T|

|T|∑
i=1

(f(xi)− yi)2, (20)

where |T| denotes the size of the test set, yi is the ground

truth of the example xi, and f(xi) is the prediction. To
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Figure 4: Comparison results for the linear regression model on the Redwine data set in terms of RMSE.
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Figure 5: Comparison results for the linear regression model on the Whitewine data set in terms of RMSE.
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Figure 6: Comparison results for the linear regression model on the Yacht data set in terms of RMSE.

avoid random fluctuation, each experiment is repeated 10

times and the averaged RMSE scores are reported.

C. Comparison Results and Discussion

In this subsection, we first present and discuss the exper-

imental results for linear regression. Then, the comparison

results for nonlinear regression with GBDT are provided.

1) Active Learning for Linear Regression: The results of

the four sampling algorithms on the Concrete data set are

shown in Figure 2. The X-axis represents the number of iter-

ations for the active learning process, and the Y-axis denotes

the value of RMSE. For all four active learning algorithms,

the RMSE decreases when the number of training examples

increases, which agrees with the intuition that model quality

is positively correlated with the size of training sets. The

proposed EMCM method is observed to perform the best

among the four methods. A possible explanation is that

the EMCM algorithm estimates the model change as the

gradient of the squared-error loss, which is directly related

to the objective function RMSE used to evaluate the models.
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Figure 7: Comparison results for the GBDT model on the Concrete data set in terms of RMSE.
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Figure 8: Comparison results for the GBDT model on the Housing data set in terms of RMSE.

Hence, the examples chosen by the EMCM method are

more likely to contribute positively to improve the regression

model. Moreover, for all of the three types of data distribu-

tions (denoted as Concrete-1, Concrete-2, and Concrete-
3), the EMCM approach consistently outperforms the other

three sampling algorithms (i.e. QBC, Greedy and RAND),

indicating that the EMCM algorithm is robust to various

types of data distributions.

Figure 3 shows the comparison on the Housing data set.

The proposed EMCM algorithm performs slightly worse

than the other three sampling algorithms at the very be-

ginning of the active learning process. The performance of

EMCM algorithm increases quickly as the active learning

proceeds and after three iterations, EMCM starts to outper-

form the other three methods. A possible explanation for

the phenomena may be as follows. At the initial phase of

active selection, the EMCM algorithm may choose some

outliers in maximizing the change to the current model,

which lead to a decrease in the performance. As discussed

in Section III-B, to maximize the change in the latter round

of active learning, the EMCM algorithm will then select the

good examples so that the negative effect of the outliers is

offset. Because the number of outliers is usually very small,

the EMCM algorithm could perform well with more data

examples sampled. Since we are mainly concerned with the

final quality of the model trained in practice, the EMCM

algorithm is still very promising in real-world applications.

Figure 4 and Figure 5 illustrate the learning curves of the

four sampling methods on the Redwine and Whitewine data

set respectively. As shown in the figures, the EMCM algo-

rithm converges much faster than the other three sampling

methods, i.e, the lowest RMSE score is achieved with much

less examples added to the training set, demonstrating that

the EMCM method is more effective in selecting the most

informative examples. Similar results are obtained when

comparing the four sampling algorithms on the Yacht data

set (as shown in Figure 6).

Significance test is performed on the comparisons, and T-

test shows that the EMCM algorithm is statistically better

(p<0.05) than the other three methods in most cases.

2) Active Learning for Nonlinear Regression: Figure 7

compares the experimental results of the four active learning

algorithms for GBDT on the Concrete data set. As we

can see, the EMCM method performs the best. The QBC

algorithm performs better than the other two sampling algo-

rithms most of the times, and the Greedy method achieves

lower RMSE score than RAND for both the Concrete-1 and

Concrete-2 date sets. For the third data set, Concrete-3,
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Figure 9: Comparison results for the GBDT model on the Redwine data set in terms of RMSE.
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(b) Whitewine-2
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Figure 10: Comparison results for the GBDT model on the Whitewine data set in terms of RMSE.
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Figure 11: Comparison results for the GBDT model on the Yacht data set in terms of RMSE.

the Greedy strategy performs worse than the weak RAND

baseline. The experimental results have demonstrated that

the EMCM approach is effective in sample selection and

robust for the nonlinear regression model.

Figure 8 illustrates the comparison results for the GBDT

model on the Housing data set. We observe that the EMCM

algorithm performs significantly better than the other three

sampling approaches in Housing-1. For the Housing-2 and

Housing-3 cases, the proposed EMCM algorithm slightly

outperforms the QBC algorithm, and significantly outper-

forms the other two approaches. In addition, compared to

the results for linear regression where the performance of the

model is hurt noticeably at the initial stage of the sampling

process (shown in Figure 3), possibly due to the inclusion of

outliers, the EMCM algorithm consistently outperforms the

other three methods during the entire data selection process.

A possible explanation for the results is that the GBDT-based

nonlinear regression model is more robust to outliers than

the linear regression model.

The experimental results of the four active sampling
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algorithms on the Redwine and Whitewine data sets are

shown in Figure 9 and Figure 10, respectively. Among the

four sampling methods, the EMCM algorithm consistently

performs the best. Figure 11 compares the four methods on

the Yacht data set, and similar results are observed.

T-test shows that the proposed EMCM algorithm is sig-

nificantly better (p<0.05) than QBC at nearly half of the

check points and statistically outperforms (p<0.05) Greedy

and RAND most time, suggesting that the proposed EMCM

algorithms are effective in choosing the most informative

examples and robust to various types of data distributions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new active learning framework, Expected

Model Change Maximization (EMCM), is proposed for

regression. It measures model change as the difference

between the current model parameters and the parameters

trained with expanded training set. Inspired by Stochastic

Gradient Descent updating rules, we use the gradient of the

loss to estimate the model change. Under this framework,

we first derive a novel active learning algorithm for linear

regression, which aims to choose the examples that maxi-

mally change the current model. The learner for nonlinear

regression is Gradient Boosting Decision Tree (GBDT),

a well-known nonlinear regression model. The GBDT is

approximated as a linear regression model through feature

mapping. We then propose an active learning algorithm

for GBDT to choose the examples which result in the

largest change to the model with respect to super features.

Extensive experimental results on benchmark data sets from

UCI machine learning repository have demonstrated that the

effectiveness and robustness of the proposed active learning

algorithms.

In this study, the proposed algorithms perform batch mode

active learning, i.e. selecting the top k informative examples.

The correlation or similarity among the selected examples

at each batch is not considered. A possible extension of the

work is to consider the diversity of the selected data set to

further minimize labeling cost.
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